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ABSTRACT : The main object of this paper is to discuss some properties of stable processes when they 

are characterized by two identically distribute stochastic integrals formed by homogeneous and continuous 

stochastic process X (t) with independent increments . The main results based on Phragmen – Lindlelof 

theory . 
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            INTRODUCTION    : Let X(t) be a homogeneous and continuous process with                       

independent increments  . f(u, ד) denotes the characteristic functions (c.f) of the increment                     X(t+ 

 We can write f(u) for f(u,1) . ד f (u,1) =( ד ,u) x(t) . It is infinitely divisible (i.d) and f – (ד

             The process X(t) has a symmetric increments if there  exist a real number b such 

that f(u)e*ibu is a real characteristic function . A process X(t) is called stable if the d.f of its 

increments is a stable d.f and X(0) = 0 . If the d.f of the increments is normal and E X(t) = 0 

for all t≥0,the stable process is called a Wiener process. A process X1(t) is said to be a Wiener 

process with linear mean value function m if X1(t) = X(t) +m(t) where X(t) is a Wiener 
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process. where m is a linear (non-random ) function . 

To define the integrals to be used and to indicate few of their properties , 

Assume that a, ν are functions defined in [A, B] where ν is non – negative. Let us form a sequence of 

subdivisions 

A = tn,0 < tn,1 < ⋯…… . . < tn,n = B    (n = 1,2, …… . . ) 

of the interval [A, B] such that 

lim
n→∞

max
1≦k≦n

(tn,k − tn,k−1) = 0          

and select a sequence of numbers tn,k
∗  where tn,k−1 ≦ tn,k

∗ ≦ tn,k (k = 1,2, … , n). Then for a given process 

X(t) let us construct a sequence of random variables in the following manner: 

Sn =∑a

n

k=1

(tn,k
∗ ) [X (υ(tn,k)) − X (υ(tn,k−1))] 

 If the sequence Sn converges in probability to a random variable S, and if this limit is independent of 

the choice of the subdivision and the intermediate points tn,k
∗ , then say that S is a stochastic integral and 

denote it by 

∫ a(t)dX(υ(t))
B

A

. 

 

Theorem: 1 .1 (Representation Theorem) 

 Let the Levy canonical representation of the characteristic function of X(1) − X(0) be given by 

b, σ,M and N. Then the Levy canonical representation for the characteristic function of the stochastic integral 

                                    ∫ tdX(υ(t))
B

A

                                                                               (1.1) 

is given by the following formulas: 

bυ = ∫(tb + t(1 − t2))

B

A

∫
x3

(1 + (tx)2)(1 + x2)
 d(M(−x) + N(x)) + dυ(t);

∞

0+

  

(1.2) 

συ
2 = σ2∫ t2dυ(t)

B

A

                                                                                                        (1.3) 

Mυ(x) = ∫ −N(
x

t
) dυ(t)

min (B,0)

min (A,0)

+ ∫ M(
x

t
) dυ(t)

max (B,0)

max (A,0)

               (x < 0)     (1.4) 

Nυ(x) = ∫ −M(
x

t
) dυ(t)

min (B,0)

min (A,0)

+ ∫ N(
x

t
) dυ(t)

max (B,0)

max (A,0)

               (x > 0)     (1.5) 
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Lemma:1.1 

 The function g is an infinitely divisible characteristic function if, and only if, it can be written in the 

form 

log g(u) = iau +
σ2

2
 u2 + ∫ r(u, x)dM(x)

−0

−∞

+ ∫ r(u, x)

∞

+0

dN(x) 

where a, σ are real constants; M and n are non – decreasing in the intervals (−∞, 0) and (0,∞) respectively, 

with  

M(−∞) = N(∞) = 0 

∫ x2dM(x) < ∞

0−

−∈

   and ∫ x2dN(x) < ∞

∈

0+

   for every ε > 0 

and 

  r(u, x) = eiux − 1 − (iux (1 + x2)⁄ )        (1.6) 

Proof of theorem 1.1 

 With out loss of generality let us assume that A ≤ 0 ≤ B. 

1. First we assume that there exists a number t0 > 0 such that t0 is a point of continuity of υ and  

   υ(t0) − υ(−t0) = 0                 (1.7) 

 The characteristic function of  (1.1) is denoted by h. Then by theorem 1.1 we have  

log h(u) =∫ log f(u ∙ t)dυ(t)
B

A

                                          (1.8) 

Now let us define a function s by 

      s(u, x, t) = r(ut, x) − r(u, tx) 

where in view of (1.6) 

                                       s(u, x, t) =
it(1 − t2)x3u

(1 + (tx)2)(1 + x2)
 

Since s(u, x, t) = o(x2) as x → 0 and s(u, x, t) = o(1) as x → ∞ the function s is integrable with respect to 

M and N. By Lemma 1.1 and the definition of s we have, 

log f(ut) = iaut −
σ2

2
 (ut)2 + ∫ (r(u, tx) + s(u, x, t))dM(x)

−0

−∞

 

+ ∫(r(u, tx) + s(u, x, t))

∞

+0

dN(x)            (1.9) 

By virtue of (1.8) and (1.9)  let us obtain 

log h(u) = iau∫ tdv(t)
B

A

−
σ2

2
 u2∫ t2dv(t)

B

A
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+∫( ∫ s(u, x, t)dM(x)

−0

−∞

+ ∫ s(u, x, t)

∞

+0

dN(x))

B

A

 dυ(t)            

+∫( ∫ r(u, tx)dM(x)

−0

−∞

+ ∫ r(u, tx)

∞

+0

dN(x))

B

A

 dυ(t)               

Using the definitions of aυ and συ we can write this relation in the form 

log h(u) = iaυt −
συ
2

2
 (ut)2 + ∫ ∫ r(u, tx)dM(x)dυ(t)

−0

−∞

B

A

 

+∫ ∫ r(u, tx)dN(x)dυ(t)

∞

0+

B

A

      (1.10) 

and in view of (1.7), Let us have  

log h(u) = iaυt −
συ
2

2
 (ut)2 + ∫ ∫ r(u, tx)dM(x)dυ(t)

−0

−∞

−t0

A

 

+ ∫ ∫ r(u, tx)dM(x)dυ(t)

−0

−∞

B

t0

              

+∫ ∫ r(u, tx)dN(x)dυ(t)

∞

0+

t0

A

                

+ ∫ ∫ r(u, tx)dN(x)dυ(t)

∞

0+

B

t0

 (1.11) 

Decomposing the third term on the right – hand side of (1.11) we get for every 𝜀 > 0. 

               𝐼 = ∫ ∫ 𝑟(𝑢, 𝑡𝑥)𝑑𝑀(𝑥)𝑑𝜐(𝑡)

−0

−∞

−𝑡0

𝐴

 

= ∫ ∫ 𝑟(𝑢, 𝑡𝑥)𝑑𝑀(𝑥)𝑑𝜐(𝑡)

−0

−∈

−𝑡0

𝐴

++∫ ∫ 𝑟(𝑢, 𝑡𝑥)𝑑𝑁(𝑥)𝑑𝜐(𝑡)

−∈

−∞

𝑡0

𝐴

 

       = 𝐼1 + 𝐼2 

Applying L’ Hospital’s rule twice we find 

𝑙𝑖𝑚
𝑥→∞

𝑟(𝑢, 𝑡𝑥)

𝑥2
= −

(𝑢𝑡)2

2
 

Hence there is a constant 𝐶1 such that for fixed 𝑢 and 𝑡 ∈ [𝐴,−𝑡0] 

|𝑟(𝑢, 𝑡𝑥)| ≤ 𝐶1(𝑢𝑡)
2𝑥2 

Therefore let us get for 𝐼1 the estimation (𝜀 → 0 +) 
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|𝐼1| ≤ 𝐶1𝑢
2∫ 𝑡2𝑑𝜐(𝑡)

−𝑡0

𝐴

 ∫ 𝑥2 𝑑𝑀(𝑥)

0−

−∈

= 𝑜(1) 

Further we can transform 𝐼2 in the following way. 

𝐼2 = ∫ ∫ 𝑟(𝑢, 𝑥)𝑑𝑥 (−𝑀 (
𝑥

𝑡
))𝑑𝜐(𝑡)

∞

∈

−𝑡0

𝐴

 

= ∫ 𝑟(𝑢, 𝑥)𝑑𝑥

∞

∈

∫ −𝑀(
𝑥

𝑡
) 𝑑𝜐(𝑡)

−𝑡0

𝐴

 

so let us obtain as 𝜀 → 0 

𝐼 = ∫ 𝑟(𝑢, 𝑥)𝑑

∞

0+

(∫ −𝑀(
𝑥

𝑡
) 𝑑𝜐(𝑡)

−𝑡0

𝐴

) 

Transforming the fourth, fifth and sixth terms of (1.11) in a similar manner to the third one we get 

𝑙𝑜𝑔 ℎ(𝑢) = 𝑖𝑎𝜐𝑡 −
𝜎𝜐
2

2
 (𝑢𝑡)2 + ∫ 𝑟(𝑢, 𝑥)𝑑

∞

0+

(∫ −𝑀(
𝑥

𝑡
)𝑑𝜐(𝑡)

−𝑡0

𝐴

) 

+ ∫ 𝑟(𝑢, 𝑥)𝑑

0−

−∞

∫𝑀(
𝑥

𝑡
) 𝑑𝜐(𝑡)

𝐵

𝑡0

     

+ ∫ 𝑟(𝑢, 𝑥)𝑑

0−

−∞

∫ −𝑁 (
𝑥

𝑡
) 𝑑𝜐(𝑡)

−𝑡0

𝐴

 

+∫ 𝑟(𝑢, 𝑥)𝑑
∞

0+

∫ 𝑁(
𝑥

𝑡
) 𝑑𝜐(𝑡)

𝐵

𝑡0

   

 Finally, using the definition of 𝑀𝜐 and 𝑁𝜐 , we can rewrite this relation in the form, 

𝑙𝑜𝑔 ℎ(𝑢) = 𝑖𝑎𝜐𝑡 −
𝜎𝜐
2

2
 (𝑢𝑡)2 + ∫ 𝑟(𝑢, 𝑥)𝑑

0−

−∞

𝑀𝜐(𝑥) + ∫ 𝑟(𝑢, 𝑥)𝑑

∞

0+

𝑁𝜐(𝑥) 

 Let us complete the proof by showing that 𝑎𝜐, 𝜎𝜐, 𝑀𝜐 and 𝑁𝜐 satisfy the condition of Lemma 1.1. 

Obviously 𝑎𝜐 and 𝜎𝑣
2 are real constants and 𝜎𝑣

2 ≥ 0. By definition it is easily seen that 𝑀𝜐 and 𝑁𝜐 are non – 

decreasing in the intervals (−∞, 0) and (0,∞), respectively, having the properties 

𝑀𝜐(−∞) = 𝑁𝜐(∞) = 0 

For every 𝜀 > 0 we obtain the inequality 

∫𝑥2𝑑𝑁𝜐(𝑥)

∈

0+

= ∫ 𝑡2
𝐵

𝑡0

∫ 𝑥2𝑑𝑁(𝑥)𝑑𝜐(𝑡)

∈ 𝑡⁄

0+

+ ∫ 𝑡2

−𝑡0

𝐴

∫ 𝑥2𝑑𝑀(𝑥)𝑑𝜐(𝑡)

0−

∈ 𝑡⁄
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             ≤ ∫ 𝑡2𝑑𝜐(𝑡)

𝐵

𝑡0

∫ 𝑥2𝑑𝑁(𝑥)

∈ 𝑡0⁄

0+

+ ∫ 𝑡2

−𝑡0

𝐴

𝑑𝜐(𝑡) ∫ 𝑥2𝑑𝑀(𝑥) < ∞

0−

∈ 𝑡0⁄

 

Analogously, let us get 

∫ 𝑥2𝑑𝑀𝜐(𝑥) < ∞

0−

−∈

 

Then Lemma 1.1 shows he statement provided that (1.7) is valid. 

2. Now let us turning to the  general case 𝑛 which (1.7) need not be true. Put for  𝑛 ≥ 𝑚𝑎𝑥 (−1/𝐴, 1/𝐵) 

𝜐𝑛(𝑡) = {

𝜐(𝑡) 𝑖𝑓 𝑡 ≤ −1 𝑛⁄

𝜐(−1 𝑛⁄ ) 𝑖𝑓 −1 𝑛⁄ < 𝑡 ≤ 1 𝑛⁄

𝜐(𝑡) 𝑖𝑓 𝑡 > 1 𝑛⁄
 

Obviously , we have 

𝑙𝑖𝑚
𝑛→∞

𝜐𝑛(𝑡) = 𝜐(𝑡)                                                                                (1.12) 

and the functions 𝜐𝑛 satisfying (1.7) are non – decreasing, non – negative and left – continuous. Hence let us 

can apply the first part of the proof to the stochastic integrals  

                                ∫ 𝑡𝑑𝑋(𝜐𝑛(𝑡))
𝐵

𝐴

                                                                               (1.13) 

and obtain representation of  𝑎𝜐𝑛 , 𝜎𝜐𝑛 , 𝑀𝜐𝑛 and 𝑁𝜐𝑛 by formulas analogous to             (1.2) – (1.5) using 

Helly’s second theorem, we get  

𝑙𝑖𝑚
𝑛→∞

∫ 𝑙𝑜𝑔 𝑓(𝑢 ∙ 𝑡)𝑑𝜐(𝑡)
𝐵

𝐴

 = ∫ 𝑙𝑜𝑔 𝑓(𝑢 ∙ 𝑡)𝑑𝜐(𝑡)
𝐵

𝐴

                                        (1.14) 

 Because 𝑙𝑜𝑔 𝑓(𝑢 ∙ 𝑡) – considered as function of t – is continuous and bounded and by (1.12) the 

sequence 𝜐𝑛 converges weakly to 𝑣. Let us denote the characteristic function of (1.13) by ℎ𝑣. In view of 

theorem 1.1 . relation (1.14) is equivalent 

𝑙𝑖𝑚
𝑛→∞

ℎn(𝑢)  = ℎ(𝑢)          

Using the known fact that under this circumstance 𝑎𝑣 → 𝑎𝜐𝑛 , 𝜎𝑣 → 𝜎𝜐𝑛 , 𝑀𝜐𝑛 ⇒ 𝑀𝑣 and 𝑁𝜐𝑛 ⇒ 𝑁𝑣 (⇒ 

stands for weak convergence) the statement follows. 

1. Proof of the main results 

Lemma: 2.1 

 The Levy canonical representation of a stable characteristic function with characteristic exponent 𝑧0 

is determined either by 𝑏 is arbitrary, 

𝜎 = 0, 𝑀(𝑥) = 𝑄1|𝑥|
−𝑧0 ,       𝑁(𝑥) = −𝑄2𝑥

−𝑧0 

(𝑄1 ≧ 0, 𝑄2 ≧ 0,𝑄1+𝑄2 > 0) for 0 < 𝑧0 < 2                              (2.1) 

or by 

 𝑏 is arbitrary 𝜎 = 0, 𝑀(𝑥) ≡ 0,    𝑁(𝑥) ≡ 0 for 𝑧0 = 2. 
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Lemma: 2.2 

 Let 0 ≦ 𝑅𝑒 𝑧3 ≦ 2 and |𝑡| ≠ 0,1. Then 

∫
𝑥2−𝑧3

(1 + (𝑡𝑥)2)(1 + 𝑥2)

∞

0+
𝑑𝑥 =

{
 
 

 
 

−𝜋

2 𝑐𝑜𝑠 (𝑧3  
𝜋
2)
 
1 − |𝑡|𝑧3−1

1 − 𝑡2
𝑖𝑓 𝑧3 ≠ 1 

−𝑙𝑜𝑔|𝑡|

1 − 𝑡2
                               𝑖𝑓 𝑧3 = 1

          (2.2) 

Proof: 

 Let us compute the integral in (2.2) by contour integration. Assume at first 𝑧3 ≠ 1 and 𝐼𝑚 𝑧3 ≦ 0. 

Let us consider the integral 

∫
𝑧2−𝑧3

((
1
𝑡)

2

+ 𝑧2) (1 + 𝑧2)𝜞

 𝑑𝑧 

taken round the contour, consisting of the line segment (𝜀, 𝑅)(𝛤1) where               0 < 𝜀 < 𝑅; a semicircle 𝛤2 

of radius R above the real axis; the line segment (– 𝑅,−𝜀)(𝛤3) and finally a semicircle 𝛤4 of radius 𝜀 above 

the real axis. Let us choose 𝜀 small and 𝑅 large and denote the integrand by 𝑔(𝑧). Then consider any branch 

of the many – valued function 𝑔. the function 𝑔 has two poles inside 𝛤, at 𝑧 = 𝑖/|𝑡| and at 𝑧 = 𝑖. From the 

definition of 𝑔 obtain 

𝑅𝑒𝑠
𝑧=𝑖

𝑔(𝑧) =
𝑖2−𝑧3𝑡2

2𝑖(1 − 𝑡2)
   𝑎𝑛𝑑  𝑅𝑒𝑠

𝑧=𝑖/|𝑡|
𝑔(𝑧) =

−𝑖2−𝑧3|𝑡|1+𝑧3

2𝑖(1 − 𝑡2)
   

Using the theorem of residues ,  

∫ 𝑔(𝑧)𝑑𝑧
𝛤

= ∫ 𝑔(𝑧)𝑑𝑧
𝛤1

+∫ 𝑔(𝑧)𝑑𝑧
𝛤2

+∫ 𝑔(𝑧)𝑑𝑧
𝛤3

+∫ 𝑔(𝑧)𝑑𝑧
𝛤4

 

                                   = 𝜋𝑖2−𝑧3  
𝑡2−𝑡1+𝑧3

1−𝑡2
                                                                  (2.3) 

The two integrals together along the real axis give, 

∫ 𝑔(𝑧)𝑑𝑧
𝛤1

+∫ 𝑔(𝑧)𝑑𝑧
𝛤3

= ∫ 𝑔(𝑥)𝑑𝑥
𝑅

𝜀

+∫ 𝑔(−𝑥)𝑑𝑥
𝑅

𝜀

 

                                                = (1 + (−1)2−𝑧3)∫ 𝑔(x)𝑑𝑥
𝑅

𝜀

 

 The other two integrals tend to 0 as 𝜀 → 0 and 𝑅 → ∞. Namely, for 𝑔 on  

𝛤2 , let us have the estimate 

                                       |𝑔(𝑧)| ≦
𝑅2−𝑅𝑒𝑧3

(𝑅2 −
1
t2
) (R2 − 1)

 

 So that 

|∫ g(z)dz
Γ2

| ≦
πR3−Rez3

(R2 −
1
t2
) (R2 − 1)

→ 0      (R → ∞) 
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 Similarly, 

|∫ g(z)dz
Γ4

| ≦
πε3−Rez3

(
1
t2
− ε2) (1 − ε2)

→ 0      (ε → 0) 

 If we multiply the relation (2.3) by 1/t2(1 + (−1)2−z3), consider R → ∞ and  ε → 0 and notice that 

i2−z3

1 + (−1)2−z3
= −

1

2 cos (z3  (
π
2))

 

then the statement of the theorem in this case. 

∫
x2−z3

(1 + (tx)2)(1 + x2)
  dx

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅∞

0+
= ∫

x2−z̅3

(1 + (tx)2)(1 + x2)

∞

0+
dx 

 Since the formula obtained is true also for the case z3 ≠ 1, Imz3 > 0. The integral (2.2) depends 

continuously on z3; therefore get the other statement by tending  z3 → 1. 

Lemma: 2.3 

 Let g be an analytic function of exponential type in Re z ≧ 0 which is continuous is Re z ≧ 0 and 

bounded on Re z = 0.If 

lim̅̅ ̅̅
x→∞

log|g(x)|

x
≦ 0 

then g is bounded in Re z ≧ 0. 

Lemma: 2.4 

 Let g be an analytic in Re z < 0, continuous in Re z ≦ 0 and bounded on Re z = 0. Moreover, let 

there exist a function h with the same properties which is bounded in Re z ≦ 0. If g ∙ h also is bounded in 

Re z ≦ 0 then g is of exponential type in Re z ≦ 0. 
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